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Abstract

Spatial and temporal variation can cause problems in designing and conducting experiments. An

introduction to methods for controlling spatial and temporal variation in ecological experiments is provided

in this article. Failure to consider spatial and temporal variation often causes researchers to lay out

experiments incorrectly. The challenge is to design experiments that not only reflect the natural variation

seen in the field but also control for the variation so that statistical tests have sufficient power.

Spatial variation is usually controlled by grouping observations and treatments into blocks. Blocks

can be laid out in a number of ways and Analysis of Variance (ANOVA) approaches to control for block

effects are discussed.

The control of temporal variation presents special difficulties because data are often serially correlated

and so observations are not independent. Use of intervention analysis and repeated measures analysis of

variance to control for temporal variation are discussed. Ecologists have also used experimental designs

which are known as BACI designs (i.e., Before-After-Control-Impact design) and can be extended to

include multiple control and/or impact sites. Intervention analysis, BACI designs, and their extensions

have subtle differences because of different assumptions about not only temporal variation but also

spatial variation.

Several recommendations are given. These include: 1) the need to have good statistical advice before

starting an experiment, 2) the need to have a sufficient number of replicates that are spread over the range

of spatial and temporal variation, and 3) the need to correctly control for serial correlation.
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Introduction

Ecological data derived from experiments and

observational studies done in the field are very of-

ten variable because patterns in nature are masked

by temporal and spatial variation in physical and

biological factors. Even though ecologists are well

aware of the problems caused by natural variation,

the ecological literature is filled experiments that

either ignore the difficulties caused by spatial and

temporal variation or deal with them in an inappro-

priate manner. Here I provide an introduction to

methods for controlling spatial and temporal vari-

ation. There is a vast literature in this area and I can

only offer some guidelines and provide a list of

helpful references.

Spatial and temporal variation can cause prob-

lems even in the most straightforward statistical

tests. This can be easily seen in a simple example.

Suppose we wished to test the hypothesis that graz-

ing in the valleys that line Lake Hovsgol reduces

aboveground biomass of herbaceous plants. We

might test this hypothesis by setting up a simple t-

test. The test is carried out in three steps. First, we

pose the null hypothesis that the parametric means

are equal (i.e. average aboveground biomass of

plants is the same in grazed and ungrazed areas)

and the alternative hypothesis that they are not. Next

we randomly draw samples from the two

populations - for example, areas where grazing

animals have been excluded and areas where ani-

mal graze freely. Finally we test the hypotheses

based on the magnitude of the test statistic t. The

calculation of t is based on the sample sizes and

sample estimates of the parametric means and

variances. If we assume the two populations have

the same variance and we draw samples of equal

size, then snYYt 2/)( 2/1

21 −= where
1Y and

2Y

equal the averages, n equals the sample size, and s

equals the standard deviation. Failure to consider

spatial and temporal variation can cause us to mis-

estimate the difference between the averages,

21 YY − , and/or the standard deviation, s.

Mis-estimation arises most often when the ex-
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periment is laid out incorrectly. For example in our

grazing experiment, we should ideally have many

replicate sites spread over a very large area and at

various times of the year. In the half the sites, we

should exclude grazing animals and in the other

half animals should be allowed to graze freely.

Making fences to keep out grazing animals is, how-

ever, quite expensive, and so for convenience, we

might fence one large area. We then would take

many “replicate” samples from within the single

fenced area and compare these samples to a set of

samples taken from an adjacent unfenced area. This

sampling protocol, while easy and convenient,

presents statistical problems because we may seri-

ously mis-estimate the averages and the standard

deviation (see Hurlbert, 1984 for a complete dis-

cussion of this problem, which is known as

pseudoreplication). The fenced area, for example,

may be on a slightly lower and thus wetter site.

Plant biomass in the fenced area would then be

greater not only from reduced grazing but also from

the effects of the added moisture, which tends to

increase primary production. Thus the difference

between the two averages confounds the effects of

moisture and grazing pressure. In contrast, the

standard deviation may be smaller than we expect

because the samples within the fence area and in

the adjacent area are so close together that they are

correlated spatially. The end result is the t-test value

will be too large and will be much larger than the

test value if we had made many separate fenced

areas and spread them over a large area. More im-

portantly we may reject the null hypothesis but for

the wrong reason. Our single fenced area may dif-

fer from the single open area because of soil mois-

ture and not grazing pressure. Yet spreading our

sampling over a large area will most certainly in-

crease the standard deviation and make it difficult

to detect a difference over and above the back-

ground of environmental “noise.” Thus the prob-

lem is how to design an experiment that not only

reflects the natural variation we see in the field but

also controls for that variation so we able to under-

take statistical tests with sufficient power.

Controlling for spatial variation

The effect of spatial variation is usually

controlled by grouping observations and treatments

into blocks. These blocks are groups of treatments

that are placed nearby each other. In the simplest

designs, blocks are transect lines laid across the

area of interest with each line containing at least

one replicate of each treatment. In analysis of

variance terms, the design with one replicate of

each treatment per block is known as a randomized

block design, and designs with multiple replicates

of each treatment per block are known as mixed

models (for a fuller explanation, see Snedecor &

Cochran, 1989; Sokal & Rohlf 1995; Potvin 2001).

Transect lines or blocks can be laid out in a

number of ways and our choice depends on our

knowledge and preconceptions of how spatial

variation affects physical and biological processes.

In general, we usually know or assume replicate

sites close together are likely to have similar

responses because of similarities in local

environmental conditions. Replicates within blocks

(or on transect lines) are thus grouped together to

standardize for the common local effects. The

blocks themselves are spread apart so differences

among blocks reflect differences among

environmental conditions. If nothing is nothing is

known about the pattern of spatial variation,

transect lines or blocks are laid out at random. If

we know something about the pattern of spatial

variation, then the transects or blocks should be

set out so replicate sites within each block or

transect are under similar conditions. For example,

if environmental conditions follow an elevational

gradient, groups of replicates treatments can then

be blocked by elevation. This is done by laying out

transect lines that follow the elevational isoclines

and randomly assigning the treatments (for

example, fenced areas or open areas) to replicate

sites along the transect.

Three different analyses of a contrived example

illustrates how blocking can control for spatial

variation. Imagine we again wish to test the effects

of grazing on plant biomass and we know that

biomass varies with elevation. Figure 1A shows

the contour map for grassland with 36 experimental

sites spread across the elevational gradient. Grazing

animals are excluded from half of the sites with

fences and the other half is accessible to grazers.

Assignment of treatments to sites should be done

randomly, but to make the analyses of the examples

clearer, the treatments are laid out in a alternating

pattern. The contrived data are given in Table 1.

First suppose we know nothing about the

potential effects of elevation on plant biomass. In

this case, the 18 fenced sites and the 18 accessible

sites would considered replicate samples, and the

simplest test would be a t-test or a one-way analysis
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Table 1. Contrived data for aboveground plant biomass (kg/m2). Layout of transects shown in Figure 1. Data

were generated by summing elevation codes (I = 0.1, II = 0.2, etc.), treatment codes (Open areas = 0.1, Fenced

areas = 0.2), and a random number between 0 and 0.1. For example, the entry for elevation V, transect B, and

fenced = 0.5 + 0.2 + 0.0054 = 0.7054.

  A   B   C   D   E   F 

I O 0.2626  F 0.3848  O 0.2866  F 0.3041  O 0.2449  F 0.3218 

II F 0.4128  O 0.3898  F 0.4627  O 0.3291  F 0.4251  O 0.3181 

III O 0.4851  F 0.5804  O 0.4290  F 0.5234  O 0.4722  F 0.5942 

IV F 0.6373  O 0.5191  F 0.6348  O 0.5774  F 0.6807  O 0.5827 

V O 0.6851  F 0.7054  O 0.6526  F 0.7886  O 0.6486  F 0.7700 

VI F 0.8867   O 0.7066   F 0.8883   O 0.7526   F 0.8778   O 0.7563 

 

Table 2. Analyses of variances for examples. Data for examples 1, 2, and 3 are given in Table 1; for example 4

in Table 3. Layouts of experiments are found in the figures; examples 1, 2, and 3 in Figure 1, example 4 in

Figure 3. d.f. = degrees of freedom, SS = Sums of Squares, MS = Mean Squares, P = probability levels. Num-

bers in parentheses in Example 4 are the adjusted degrees of freedom (Greenhouse-Geisser correction). Treat-

ment averages (O = open areas; F = fenced areas) and standard errors (S.E.) are given with each analysis.

Source d.f. SS MS F-ratio P  Average S.E. 

Example 1 
Treatment 

1 0.0881 0.0881 2.625 0.1145 O 0.505 0.043 

Error 34 1.1408 0.0336   F 0.604 0.043 

Example 2 
Treatment 

1 0.0881 0.0881 93.197 0.0002 O 0.505 0.007 

Elevation 5 1.1127 0.2225 235.509 <0.0001 F 0.604 0.007 

Treatment x Elevation 5 0.0047 0.0009 0.969 0.4562    

Error 24 0.0234 0.0010      

Example 3 
Treatment 

1 0.0881 0.0881 5.342 0.0688 O 0.505 0.030 

Transect 5 0.0013 0.0003 0.015 0.9998 F 0.604 0.030 

Treatment x Transect 5 0.0824 0.0165 0.374 0.8613    

Error 24 1.0571 0.0440      

Example 4 
Between Subjects Analysis 

        

Treatment 1 0.0881 0.0881 662.08 <0.0001 O 0.505 0.003 

Plot within Treatment = Error  4 0.0005 0.0001   F 0.604 0.003 

Within Subjects Analysis         

Time (2.6) 5 1.1127 0.2225 194.657 <0.0001    

Treatment x Time (2.6) 5 0.0047 0.0009 0.8265 0.4935    

Error (10.6) 20 0.0229 0.0011           

 

of variance in which the spatial arrangement is

ignored. Analysis of variance shows no significant

effect of grazing because the error variance is too

large (see Table 2). The average plant biomass

between the two treatments appears to be different

seem to be different (Table 2) but there is too much

“noise” (i.e. the standard errors are large) to detect

a significant “signal” of the treatments (i.e. the

difference between the treatments).

because the blocking has reduced the error variance

(Table 2). Note the treatment averages for this

analysis are identical to the averages from the first

analysis (Table 2). In addition, the two analyses

have the same treatment Sums of squares (Table 2,

Treatment SS = 0.0881), which a measure of the

amount of variation explained by the treatment

effect. The “signal” remains the same but the level

of noise has been reduced by taking into account

The outcome is quite different if information

about elevation is included in the analysis. Suppose

the transect lines follow the elevation contours

exactly (Fig. 1B), and the analysis of variance

includes transect lines as blocks. The test now

shows significant effect of grazing on plant biomass

the elevational gradient. As a result, the standard

errors of the averages are reduced (Table 2). Note

that the effect of blocking can be seen in the block

averages (Fig. 2).

Blocking re-distributes the unexplained

variation, which is related to the error Sum of
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Figure 1. Contrived elevation contour maps showing positions of fenced and open areas. Shaded circles are

fenced areas; open circles are open areas. Panel A shows layout for one-way analysis of variance that ignores

spatial effects (Example 1 in Table 2). Panel B shows layout for two-way analysis of variance that controls for

spatial variation by using elevation contours as blocks (Example 2 in Table 1). Panel C shows layout for two-

way analysis of variance that fails to control for spatial variation because blocks (i.e. transects) run across the

elevational gradient.
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Squares. In the one-way analysis of variance, in

which spatial information is ignored, the error Sum

of Squares is 1.1408 with 34 degrees of freedom

and contains the variation due to elevation. The

blocking by elevation in the second analysis of

variance partitions the original error sums of

squares into variation due to elevation (SS = 1.1127,

d.f. = 5), to the interaction of treatment and

elevation (SS = 0.0047, d.f. = 5), and to unexplained

sources (i.e. the new error Sum of Squares, which

equals 0.0234 with d.f. = 24). The sum of the new

Sum of Squares and their degrees of freedom equal

the original error Sum of Squares and its d.f. The

variation is truly re-distributed by blocking.

Blocking can still improve the power of a test

even when we don’t know the pattern of spatial

effects. As an extreme example, suppose we lay

out the transects so they ran across the elevational

gradient (Fig. 1C). Each block would then contain

a collection of sites that differ quite bit but blocks

blocking, which controls for spatial variation by

grouping similar sites together.

Normally we would expect our ability to control

for spatial variation to fall somewhere the two

extremes. At one extreme, the test is very powerful

if we can account for the effects of spatial variation

exactly. At the other extreme, the test is only slightly

better than simple t-test if we completely misjudge

the direction of the gradient. Even with a good guess

of the direction of the gradient combined with

random assignment of the direction and position

of transects based on our guess will provide a

reasonably powerful test.

Controlling for temporal variation

The control of temporal variation, at least

naively, should be akin to the control of spatial

variation with variation through time replacing

variation across space. However, there are

will not differ very much from each other. There is

no change in the treatment averages but the

treatment standard errors are quite large (Table 2).

The analysis of variance shows no significant

difference between the treatments. The effect of

blocks is also not significant, and the block averages

are nearly identical (Fig. 2). The standard errors of

the blocks are large because the spatial variation

across the elevational gradient in contained within

each block. This design does a poor job of

accounting for the spatial effects of elevation, but

it is a design that is commonly used when

researchers do not understand the purpose of

statistical difficulties because the data are often

serially correlated. This means an observation from

one time point is correlated with an observation

from the next time point, and so the observations

are not independent. For example, if the air

temperature at 1300h is 100C, it is likely the air

temperature at 1400h will be within a couple of

degrees of 100C. The temperatures are correlated.

Standard statistical tests, such as t-tests, will be

biased if there are temporal correlations in the data

because the sample variance is underestimated. The

tests, thus, tend to reject the null hypothesis too

often. A full description of how to deal with serially
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Blocking by transect

A B C D E F

A
v
e
ra

g
e
 p

la
n
t 
b
io

m
a
s
s
 a

n
d

 S
.E

. 
in

 k
g

/m
2

0.0

0.2

0.4

0.6

0.8

1.0

Blocking by elevation

I II III IV V VI
0.0

0.2

0.4

0.6

0.8

1.0

Table 3. Contrived data for repeated-measures analysis of variance. Plot of data is given in Figure 3. Data are

identical to the data in Table 1, but re-arranged so that time replaces elevation. Codes for elevation, which are

found in Table 1, are given below the new codes for time. Letters within the table identify block codes used in

Table 1.

Treatment Plot Time 1  Time 2  Time 3  Time 4  Time 5  Time 6  

  (I)  (II)  (III)  (IV)  (V)  (VI)  

Open 1 0.2626 A 0.3898 B 0.4851 A 0.5191 B 0.6851 A 0.7066 B 

Open 2 0.2866 C 0.3291 D 0.4290 C 0.5774 D 0.6526 C 0.7526 D 

Open 3 0.2449 E 0.3181 F 0.4722 E 0.5827 F 0.6486 E 0.7563 F 

Fenced 1 0.3848 A 0.4128 B 0.5804 A 0.6373 B 0.7054 A 0.8867 B 

Fenced 2 0.3041 C 0.4627 D 0.5234 C 0.6348 D 0.7886 C 0.8883 D 

Fenced 3 0.3218 E 0.4251 F 0.5942 E 0.6807 F 0.7700 E 0.8778 F 

 

Figure 2. Block averages and standard errors from

examples 2 and 3 in Table 2. Note block averages

show the effects of elevation and have smaller

standard errors when blocking is done by elevation.

correlated data is beyond the scope of this paper;

see Box and Jenkins (1976) for a good introduction.

Repeated measures analysis of variance is often

used to control for temporal variation (e.g., von
Ende, 2001). This is good method because the
significance tests are adjusted for serial

correlations. The adjustment, however, assumes a

very specific form of serial correlation, and it can

be difficult to assess how well the data meet the
assumption about correlation structure. Repeated
measures analysis of variance can be done as either
a univariate or multivariate analysis, and these two
approaches give different results because different
assumptions are made about the correlation
structure. It has been my experience the two
approaches give similar results except when the
significance of a test is marginal.

different names: elevation SS = time SS and

treatment x elevation SS = treatment x time SS.

The error Sum of Squares in the two-way analysis

of variance is partitioned into two parts in the

repeated measures analysis of variance.

Although the Sums of Squares are similar, the

interpretation of the tests differs slightly for the

repeated measures analysis. The treatment F-ratio

The same contrived data can be used to illustrate

how a repeated measures analysis of variance

partitions the variation. Suppose we again wish to

test the effects of grazing but we the suspect the

amount of plant biomass depends on the season.

Thus early in the spring, we might expect plant

biomass to be low in both open areas and fenced

areas. As the season progresses and plants begin to
grow, the amount of biomass should increase.
However, we would expect the increase to be larger
in the areas where grazers have been fenced out.
Table 3 shows the contrived data from Table B re-
arranged into a design of three fenced areas and
three open areas, each sampled six times during

the season.

Repeated measures analysis of variance divides
the analysis into two parts - “Between Subjects”
and “Within Subjects.” This terminology comes
from the field of experimental psychology, where
repeated measures analysis was developed for the
repeated testing of individuals (i.e., subjects. The
Between Subjects analysis tests the overall effect
of the treatment and is akin to testing the averages

across time. The Within Subjects analysis tests for

trends across time and if that trend differs among

treatments.

Table 2 gives the repeated measures analysis

and shows the relationships to the standard analysis

of variance in which elevation is blocked. Note that

several of the Sums of Squares are identical because

the same contrived data are used in both analyses.

The treatment SS is the same in both analyses.

Other Sums of Squares are the same but have
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Figure 3. Plot of contrived data used in the repeated-

measures analysis. Shaded circles denote fenced

areas; open circles denote open areas. Data are given

in Table 3; analysis is given in Table 2.
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tests the null hypothesis that there is no overall

average difference between fenced and open areas.

The Between Subjects test is identical to an one-

way analysis of variance using the averages across

time as the replicates (i.e. 3 averages from the

fenced areas and 3 averages from the open areas).

Just as in the blocking of transects for spatial

variation, controlling for the effects of time reduces

the standard errors (Table 2).

The Within Subjects analysis tests for the effects

of the repeated measurements done over time. The

F-ratio for the effect of time tests the null hypothesis

that there is no change in plant biomass over time.

This test is significant, and we conclude that plants,

not surprisingly, gain biomass as the season

progresses (see Fig. 3). The correction for serial

we have a single temporal series of observations

before and after an event or change. For example

we could have data on plant biomass before and

after the introduction of grazing animals into a

single area. The effect of grazing could be tested

by comparing the before and after observations with

a simple t-test. This kind of analysis is known as

intervention analysis and was first used to test the

effects of air pollution in Los Angeles after the

implementation of laws for pollution controls (Box

and Tiao 1975).

An extension of this approach involves not only

data from before and after an intervention but also

data from a control and an impact site (Fig. 4A). In

the ecological literature, experimental designs are

known as BACI designs (i.e., Before-After-

Control-Impact designs). Analysis is carried out

by taking the difference between paired control and

impact observations and comparing the “before”

differences against the “after” differences (see

example in Fig. 4A).

In a series of papers, Underwood (1991, 1992,

1993, 1994) extended BACI designs to include

multiple control and/or impact sites. These designs

are known as “Beyond BACI” designs or IVRS

design (for Impact Versus Reference Sites). The

analysis is similar to the BACI analysis but the

single control observation at each time point is

replaced with the average of the reference (i.e.

control) sites. The before and after differences are

compared using a t-test or analysis of variance (see

example in Fig. 4B). Intervention analysis, BACI

designs, and their extensions have subtle

differences because of different assumptions about

not only temporal variation but also spatial

variation. For a full discussion of the issues raised

by ecological data (see Underwood, 1991, 1992,

1993, 1994 and Stewart-Oaten & Bence, 2001).

Recommendations

In closing, I would like to offer several

suggestions. While my advice is framed within the

context of the problems raised by spatial and

temporal variation, these are common-sense

notions that are applicable to any field experiment.

1. Seek advice about experimental design and

statistical analysis before you start an experiment,

not after you collect the data.

2. Spread your replicates over the ranges of

spatial and temporal variation that are of interest.

Avoid setting up an experiment in which all the

correlation among the repeated measurement of the
same plots is carried out by adjusting the degrees
of freedom (see Table 2). Finally, the test for the
effect of treatment x time asks if the average
response in fenced and open areas differs over time.
This test is not significant, suggesting that the
temporal changes in plant biomass show a similar
pattern. The only difference is that the fenced areas

have higher yields at any point in time.

More on temporal variation: Intervention

analysis, BACI and beyond

One other situation is worth mentioned because

it occurs so often in course of environmental

monitoring. One could imagine a situation in which
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Figure 4. Contrived time series data with an intervention or change occurring at the time indicated by the

arrows. Control sites, which are not affected by the intervention, are shown as open circles. The solid circles

show the data for the single impact site. The D values are the averages based on the difference between the

paired control and impact data at each time point. Numbers in parentheses are standard errors. The Before and

After D’s can be compared with a t-test. The t-test is often adjusted for the serial correlation in the data. Panel A

shows standard BACI (Before-After-Control Impact) analysis, which is based on a single control site and a

single impact site. Panel B shows a “Beyond BACI” design in which the D’s are based on the difference

between the average of several control sites and the single impact site at each time point.

replicates of a particular treatment are grouped

together in either time or space. For example, you

should never use a single fenced area and repeatedly

sampling plant biomass within that area.

3. Use your knowledge of spatial patterns to

block groups of treatments together. Each block

should encompass an area in which you expect the

background environmental conditions to be similar.

Each block should contain at least one replicate of

each treatment.

4. Experimental designs with blocks are

considered mixed models. F-ratios and associated

degrees of freedom in mixed models depend on

the number of blocks and treatments, not on the

number of replicates per block by treatment

combination. Given the choice between increasing

the number of replicates or the number of blocks,

you should always increase the number of blocks.

5. Data taken at different points in time are often

serially correlated and analyses must correct for

these correlations. Repeated measures analysis of

variance is a reasonable approach if you wish to

control for serial correlation.

6. Intervention analysis, BACI designs and their

extensions can involve slightly different

assumptions about spatial and temporal

correlations. Consult someone familiar with these

methods unless you are certain of how you wish to

model spatial and temporal correlations.
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Õóðààíãóé

Îðîí çàé, öàã õóãàöààíû õóâüñàë íü òóðøèëòûí

ñóäàëãààã òºëºâëºõ, õèéæ ã¿éöýòãýõýä õ¿íäðýë

ó÷ðóóëàõ íü öººíã¿é. Ýíýõ¿¿ ºã¿¿ëëýýð

ýêîëîãèéí ñîðèë, òóðøèëòûí ñóäàëãàà õèéõäýý

îðîí çàé, öàã õóãàöààíû õóâüñëûã õýðõýí õÿíàõ

àðãóóäûã òàíèëöóóëñàí áîëíî. Ñóäëàà÷èä îðîí

çàé, öàã õóãàöààíû õóâüñëûã á¿ðýí õàðãàëçàí

¿çýæ ÷àäààã¿éãýýñ ñîðèë, òóðøèëòûí àæëàà

áóðóó ã¿éöýòãýõýä õ¿ðäýã. Èéìä ýêîëîãèéí

òóðøèëòûí ñóäàëãààíû õàìãèéí ÷óõàë àñóóäàë

áîë ñóäàëãààíû òàëáàéä òîõèîëääîã áàéãàëèéí

õóâüñëûã òóñãàñàí òºäèéã¿é, ò¿¿í÷ëýí ýíýõ¿¿

õóâüñëûã õÿíàñàí, òèéì ÷ ó÷ðààñ ºãºãäºëäºº ä¿í

øèíæèëãýý õèéõ ñòàòèñòèê òåñò¿¿ä íü

õàíãàëòòàé “õ¿÷èðõýã”  áàéõ òóðøèëòûí

ñóäàëãààã òºëºâëºõ àñóóäàë þì.

Îðîí çàéí õóâüñëûã àæèãëàëò áà òóðøèëòûí

íýãæ¿¿äýý “áëîê” áîëãîí á¿ëýãëýõ àðãààð ãîë

òºëºâ õÿíàäàã. Áëîêóóäûã îëîí ÿíçûí àðãààð

¿¿ñãýæ áîëîõ áà áëîêûí íºëººã õÿíàõ âàðèàíñûí

àíàëèçûí (Analysis of Variance áóþó ANOVA)

õàíäëàãûã ìºí ýíä àâ÷ ¿çëýý.

ªãºãäë¿¿ä èõýâ÷ëýí öóâàà õàìààðàëòàé

(àâòîêîððåëÿöè) áºãººä àæèãëàëòóóä íü áèå

áèåíýýñ ¿ë õàìààðàëòàé áóñ áàéäàã ó÷ðààñ öàã

õóãàöààíû õóâüñëûã õÿíàõ íü èë¿¿ õ¿íäðýëòýé

áàéäàã. Èíòåðâåíöèéí àíàëèç (intervention

analysis), äàâòàãäñàí õýìæèëòèéí âàðèàíñûí
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àíàëèçûã (repeated measures analysis of variance)

öàã õóãàöààíû õóâüñëûã õÿíàõàä õýðýãëýõ òóõàé

àâ÷ ¿çñýí áîëíî. ̄ ¿íýýñ ãàäíà ýêîëîãè÷èä BACI

äèçàéí (ºìíºõ áà äàðààõ õÿíàëòûí íºëººíèé

äèçàéí áóþó Before-After-Control-Impact design)

ãýæ íýðëýãäýõ, îëîí õÿíàëòûí áîëîí ñîðèëûí

òàëáàéã õàìðóóëàí ºðãºòãºæ áîëîõ òóðøèëòûí

äèçàéíûã õýðýãëýõ íü áèé. Èíòåðâåíöèéí àíàëèç,

BACI äèçàéí áîëîí òýäãýýðèéí ºðãºòãºë¿¿ä íü

çºâõºí öàã õóãàöààíû òºäèéã¿é, îðîí çàéí

õóâüñëûí òàëààðõ òºñººëëººðºº õîîðîíäîî áàãà

ÿëãàãääàã.

Äýýðõ àñóóäàëòàé õîëáîîòîé õýä õýäýí

çºâëºìæèéã ýíý ºã¿¿ëëýýð ºãëºº. Òóõàéëáàë: 1)

òóðøèëòàà õèéæ ýõëýõèéí ºìíº ñòàòèñòèêèéí

çºâëºãºº àâàõûí ÷óõëûã, 2) îðîí çàé, öàã

õóãàöààíû õóâüñëûã öàð õ¿ðýýã õàìàðñàí

õàíãàëòòàé òîîíû äàâòàëòòàé áàéõûí

øààðäëàãàòàéã, ò¿¿í÷ëýí 3) öóâàà õàìààðëûã

(àâòîêîððåëÿöè) çºâ çîõèñòîé õÿíàõ

øààðäëàãàòàé áîëîõ òóõàé çºâëºñºí áîëíî.




